ECC-椭圆曲线加密算法
K(K为公开密钥),G(G为基点)为椭圆曲线ep(a,b)上一点,K=kg,n为G的阶,k为小于n的整数(K<n为私有密钥),则给定的k和G,根据加法法则,计算K很容易。
通信加密过程为:
a选定一条椭圆曲线,并选取曲线上一点作为基点
a选择一个私有密钥,并生成一个公开密钥
a将椭圆曲线,基点和公开密钥发给b
b收到信息后,将待传输明文编码到椭圆曲线上一点,并产生一个随机整数
b计算一个点并传给a,a根据信息解出的结果是b选择曲线上的点,再对这个点解码就可以得到明文
- def get_inverse(mu, p):
- for i in range(1, p):
- if (i * mu) % p == 1:
- return i
- return 2
- def get_gcd(zi, mu):
- if mu:
- return get_gcd(mu, zi % mu)
- else:
- return zi
- def get_np(x1, y1, x2, y2, a, p):
- flag = 1 # 定义符号位(+/-)
- # 如果 p=q k=(3x2+a)/2y1mod p
- if x1 == x2 and y1 == y2:
- zi = 3 * (x1 ** 2) + a # 计算分子 【求导】
- mu = 2 * y1 # 计算分母
- # 若P≠Q,则k=(y2-y1)/(x2-x1) mod p
- else:
- zi = y2 - y1
- mu = x2 - x1
- if zi * mu < 0:
- flag = 0 # 符号0为-(负数)
- zi = abs(zi)
- mu = abs(mu)
- # 将分子和分母化为最简
- gcd_value = get_gcd(zi, mu) # 最大公約數
- zi = zi // gcd_value # 整除
- mu = mu // gcd_value
- inverse_value = get_inverse(mu, p)
- k = (zi * inverse_value)
- if flag == 0: # 斜率负数 flag==0
- k = -k
- k = k % p
- x3 = (k ** 2 - x1 - x2) % p
- y3 = (k * (x1 - x3) - y1) % p
- return x3, y3
- def get_rank(x0, y0, a, b, p):
- x1 = x0 # -p的x坐标
- y1 = (-1 * y0) % p # -p的y坐标
- tempX = x0
- tempY = y0
- n = 1
- while True:
- n += 1
- # 求p+q的和,得到n*p,直到求出阶
- p_x, p_y = get_np(tempX, tempY, x0, y0, a, p)
- # 如果 == -p,那么阶数+1,返回
- if p_x == x1 and p_y == y1:
- return n + 1
- tempX = p_x
- tempY = p_y
- def get_param(x0, a, b, p):
- y0 = -1
- for i in range(p):
- # 满足取模约束条件,椭圆曲线Ep(a,b),p为质数,x,y∈[0,p-1]
- if i ** 2 % p == (x0 ** 3 + a * x0 + b) % p:
- y0 = i
- break
- # 如果y0没有,返回false
- if y0 == -1:
- return False
- # 计算-y(负数取模)
- x1 = x0
- y1 = (-1 * y0) % p
- return x0, y0, x1, y1
- def get_graph(a, b, p):
- x_y = []
- # 初始化二维数组
- for i in range(p):
- x_y.append(['-' for i in range(p)])
- for i in range(p):
- val = get_param(i, a, b, p) # 椭圆曲线上的点
- if val:
- x0, y0, x1, y1 = val
- x_y[x0][y0] = 1
- x_y[x1][y1] = 1
- print("椭圆曲线的散列图为:")
- for i in range(p): # i= 0-> p-1
- temp = p - 1 - i # 倒序
- # 格式化输出1/2位数,y坐标轴
- if temp >= 10:
- print(temp, end=" ")
- else:
- print(temp, end=" ")
- # 输出具体坐标的值,一行
- for j in range(p):
- print(x_y[j][temp], end=" ")
- print("") # 换行
- # 输出 x 坐标轴
- print(" ", end="")
- for i in range(p):
- if i >= 10:
- print(i, end=" ")
- else:
- print(i, end=" ")
- print('\n')
- def get_ng(G_x, G_y, key, a, p):
- temp_x = G_x
- temp_y = G_y
- while key != 1:
- temp_x, temp_y = get_np(temp_x, temp_y, G_x, G_y, a, p)
- key -= 1
- return temp_x, temp_y
- def ecc_main():
- while True:
- a = int(input("请输入椭圆曲线参数a(a>0)的值:"))
- b = int(input("请输入椭圆曲线参数b(b>0)的值:"))
- p = int(input("请输入椭圆曲线参数p(p为素数)的值:")) # 用作模运算
- # 条件满足判断
- if (4 * (a ** 3) + 27 * (b ** 2)) % p == 0:
- print("输入的参数有误\n")
- else:
- break
- # 输出椭圆曲线散点图
- get_graph(a, b, p)
- # 选点作为G点
- G_x = int(input("请输入选取数字的x坐标值:"))
- G_y = int(input("请输入选取数字的y坐标值:"))
- # 获取椭圆曲线的阶
- n = get_rank(G_x, G_y, a, b, p)
- # user1生成私钥,小key
- key = int(input("请输入私钥小key(<{}):".format(n)))
- # user1生成公钥,大KEY
- KEY_x, kEY_y = get_ng(G_x, G_y, key, a, p)
- # 加密准备
- k = int(input("请输入一个整数k(<{})用于求kG和kQ:".format(n)))
- k_G_x, k_G_y = get_ng(G_x, G_y, k, a, p) # kG
- k_Q_x, k_Q_y = get_ng(KEY_x, kEY_y, k, a, p) # kQ
- # 加密
- plain_text = input("请输入需要加密的字符串:")
- plain_text = plain_text.strip()
- # plain_text = int(input("user1:请输入需要加密的密文:"))
- c = []
- print("密文为:", end="")
- for char in plain_text:
- intchar = ord(char)
- cipher_text = intchar * k_Q_x
- c.append([k_G_x, k_G_y, cipher_text])
- print("({},{}),{}".format(k_G_x, k_G_y, cipher_text), end="-")
- # 知道 k_G_x,k_G_y,key情况下,求解k_Q_x,k_Q_y是容易的,然后plain_text = cipher_text/k_Q_x
- print("\n解密得到明文:", end="")
- for charArr in c:
- decrypto_text_x, decrypto_text_y = get_ng(charArr[0], charArr[1], key, a, p)
- print(chr(charArr[2] // decrypto_text_x), end="")
- if __name__ == "__main__":
- ecc_main()
复制代码
|